LFD Book Forum Exercises and Problems
 User Name Remember Me? Password
 FAQ Calendar Mark Forums Read

 Thread Tools Display Modes
#20
01-26-2013, 11:04 PM
 srport@pacbell.net Junior Member Join Date: Jan 2013 Posts: 1
Re: Exercises and Problems

Question about the pocket algorithm described on p. 80 and illustrated on p. 83.

For data that is not linearly separable, I originally thought the pocket algorithm would run exactly like the PLA and simply take the best performing w vector over the entire iteration range and report it back. However, the description on p. 80 says that the w vector is not updated if Ein is worse.

Suppose after a certain number of iterations that the set of misclassified points is such that every misclassified point used to perform an update returns a worse performing w vector. In this case, the algorithm will never be able to find a better w vector.

My experience watching the PLA as it iterates is that it seems to jump about, and eventually (randomly) converges (with linearly separable data). I've seen proofs on the internet that it will converge, but do not really understand them. My point is that each iteration of the PLA does not necessarily improve g(x), but that in order to reach the best g(x), this jumping about is part of the process.

Can you please comment?

 Tags hoeffding's inequality, hoeffding-inequality

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is Off Forum Rules
 Forum Jump User Control Panel Private Messages Subscriptions Who's Online Search Forums Forums Home General     General Discussion of Machine Learning     Free Additional Material         Dynamic e-Chapters         Dynamic e-Appendices Course Discussions     Online LFD course         General comments on the course         Homework 1         Homework 2         Homework 3         Homework 4         Homework 5         Homework 6         Homework 7         Homework 8         The Final         Create New Homework Problems Book Feedback - Learning From Data     General comments on the book     Chapter 1 - The Learning Problem     Chapter 2 - Training versus Testing     Chapter 3 - The Linear Model     Chapter 4 - Overfitting     Chapter 5 - Three Learning Principles     e-Chapter 6 - Similarity Based Methods     e-Chapter 7 - Neural Networks     e-Chapter 8 - Support Vector Machines     e-Chapter 9 - Learning Aides     Appendix and Notation     e-Appendices

All times are GMT -7. The time now is 05:33 PM.

 Contact Us - LFD Book - Top