LFD Book Forum Is the Hoeffding Inequality really valid for each bin despite non-random sampling?

#1
01-30-2013, 11:57 PM
 scottedwards2000 Junior Member Join Date: Jan 2013 Posts: 9
Is the Hoeffding Inequality really valid for each bin despite non-random sampling?

The multiple bin analogy of picking the best h is a very helpful way of visualizing the situation, and I totally get how the union bound sets an upper limit on the probability of exceeding the error threshold. What I am actually questioning is whether those individual probabilities that compose the union bound are correct. I can see that they are just the individual Hoeffding Inequalities for each h, but is the Hoeffding Inequality really valid for all those h's in spite of the fact that we are NOT taking random samples from each "bin"? We are only picking our marbles (x's) ONCE, and then re-picking the same marbles from each bin (yes, the red-green colors of those marbles can change, based on the specific h, but aren't they the same marbles (x's)?).

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is Off Forum Rules
 Forum Jump User Control Panel Private Messages Subscriptions Who's Online Search Forums Forums Home General     General Discussion of Machine Learning     Free Additional Material         Dynamic e-Chapters         Dynamic e-Appendices Course Discussions     Online LFD course         General comments on the course         Homework 1         Homework 2         Homework 3         Homework 4         Homework 5         Homework 6         Homework 7         Homework 8         The Final         Create New Homework Problems Book Feedback - Learning From Data     General comments on the book     Chapter 1 - The Learning Problem     Chapter 2 - Training versus Testing     Chapter 3 - The Linear Model     Chapter 4 - Overfitting     Chapter 5 - Three Learning Principles     e-Chapter 6 - Similarity Based Methods     e-Chapter 7 - Neural Networks     e-Chapter 8 - Support Vector Machines     e-Chapter 9 - Learning Aides     Appendix and Notation     e-Appendices

All times are GMT -7. The time now is 11:06 AM.