LFD Book Forum  

Go Back   LFD Book Forum > Book Feedback - Learning From Data > Chapter 1 - The Learning Problem

Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 09-04-2018, 10:44 PM
v_venky v_venky is offline
Junior Member
Join Date: Sep 2018
Posts: 2
Default Hoeffding inequality and noisy targets

I found the jump from learning a deterministic target function to learning a probability distribution a big jump. The treatment of this concept in the book was a bit too fast for me and not detailed. Also the "intuitive" justification of hoeffding in this case also was not clear to me at all -- Hoeffding seems to be a tricky concept in the sense that it's application is prone to error if one is not careful. Is there a more step-by-step explanation of this section somewhere?

One starter question in this regard is that in the basic hoeffding derivation, we have used a binary classifier i.e. the target function returns +/-1 (or possibly a multi-class classifier). In the noisy target case should the understanding be that it returns a number 'p' signifying the probability of +1 at x?
Reply With Quote

hoeffding's inequality, noisy target

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT -7. The time now is 05:17 AM.

Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.