LFD Book Forum  

Go Back   LFD Book Forum > Book Feedback - Learning From Data > Chapter 4 - Overfitting

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #1  
Old 05-19-2014, 11:20 PM
sasin324 sasin324 is offline
Junior Member
 
Join Date: May 2014
Posts: 2
Default overfitting and spurious final hypothesis

Based on the book page 124-125
"On a finite data set, the algorithm inadvertently uses some of the degree of freedom to fit the noise, which can result in overfitting and a spurious final hypothesis."
I have some questions based on this sentence:
1. What is spurious hypothesis? How can we identify the spurious hypothesis?
2. Is there any relationship between overfitting phenomenon and the spurious hypothesis?
3. Does spurious hypothesis come from the impact of deterministic noise in data set?

I got stuck for a while to define spurious hypothesis and how to identify it from the model.

Best Regards,
Reply With Quote
 

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -7. The time now is 03:31 AM.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.