LFD Book Forum  

Go Back   LFD Book Forum > Book Feedback - Learning From Data > Chapter 4 - Overfitting

Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 01-07-2019, 11:36 PM
Fromdusktilldawn Fromdusktilldawn is offline
Junior Member
Join Date: Sep 2017
Posts: 5
Default What is the definition of expectation with respect to data set

In probability class, we take expectation with respect to random variables with a certain probability distribution.

Suppose that X ~ N(mu,sigma^2) is a Gaussian random variable.

Then E[X] = mu, the mean of the Gaussian random variable, which can be show by performing expectation integral of the Gaussian distribution.

In the book, D is a set of pair of values {(x_n,y_n)}, not a random variable. Even if it is a random variable, its distribution is unknown.

Then what does does the symbol E_D or E_D_val mean?

What is the random variable here? Is it g, g^-, x_n, y_n, or (x_n,y_n) or e(g^-(x_n),y_n)?

And these random variables to generated according to what probability distribution?

This is the only part of the book that is confusing for me. Please clarify what it means to take expectation with respect to a set.
Reply With Quote

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT -7. The time now is 02:46 PM.

Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.