LFD Book Forum  

Go Back   LFD Book Forum > Book Feedback - Learning From Data > Chapter 1 - The Learning Problem

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #1  
Old 08-10-2012, 07:56 PM
vsthakur vsthakur is offline
Member
 
Join Date: Jun 2012
Posts: 14
Default Problem 1.10 : Expected Off Training Error

Hi,
If I got it right, in a noiseless setting, for a fixed D, if all f are equally likely, the expected off-training-error of any hypothesis h is 0.5 (part d of problem 1.10, page 37) and hence any two algorithms are the same in terms of expected off training error (part e of the same problem).

My question is, does this not contradict the generalization by Hoeffding. Specifically, the following point is bothering me

By Hoeffding : Ein approaches Eout for larger number of hypothesis (i.e for small epsilon) as N grows sufficiently large. Which would imply that expected(Eout) should be approximately the same as expected(Ein) and not a constant (0.5).

Can you please provide some insight on this, perhaps my comparison is erroneous.

Thanks.
Reply With Quote
 

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -7. The time now is 02:54 AM.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.