LFD Book Forum  

Go Back   LFD Book Forum > Course Discussions > Online LFD course > Homework 1

Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 01-14-2013, 07:33 PM
Haowen Haowen is offline
Join Date: Jan 2013
Posts: 24
Default M=|H|? (Lecture 2 slide 16-17)

I have a question regarding the value of M in the multiple-bins Hoeffding bound slides.

M is supposed to be the number of different alternate hypotheses considered by the learning algorithm.

At the same time, H is the space of possible hypotheses that can be considered by the algorithm (e.g., all linear functions, etc).

I keep going back and forth in my mind about whether M=|H|.

Specifically, suppose that for a SPECIFIC training set X, after looking at the data points in X, the algorithm only explored some subset of H, say G with |G| < |H|.

Would it then be correct to set M = |G| and say that for the specific training set X, the probability of the hypothesis being bad is at most 2|G|*the hoeffding bound ? Or would this be incorrect since the theorem only deals with the behavior of the system over all possible X with the distribution P.

Reply With Quote

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT -7. The time now is 09:30 AM.

Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.