LFD Book Forum  

Go Back   LFD Book Forum > Book Feedback - Learning From Data > Chapter 2 - Training versus Testing

Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 04-30-2012, 05:25 PM
shockwavephysics shockwavephysics is offline
Join Date: Apr 2012
Posts: 17
Question bias and variance - definition of g bar

When considering bias and variance, the bias is defined as the squared difference between gbar and f. The lecture said that gbar is the expected value of g. The book said that one can think of this as the average of many g's returned by runnign the training algorithm on a large number of instanciations of data sets. I have two questions:

1. If g has multiple parameters, do you average the curves, or do you average the individual parameters (or does it matter)?

2. When the book says we can think of it this way, does it mean this is not the exact definition? The point of bias is to isolate the part of the error that has nothing to do with the errors caused by sample data set, or the noise in the measurement. Is there a reason why the bias is not determined by simply minimizing the squared error between the target function, f, and the form of the hypothesis set, and returning the value of that minimum. Alternatively, would it not be just as good to create a (digitized) set of all possible g's and calculate the squared error, and return the smallest error calculated. I tried this for the H=b and f=sin(pi*x) case, and I got bias=.5 .
Reply With Quote

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT -7. The time now is 07:24 AM.

Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.