LFD Book Forum  

Go Back   LFD Book Forum > Book Feedback - Learning From Data > Chapter 1 - The Learning Problem

Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 08-24-2015, 07:28 AM
henry2015 henry2015 is offline
Join Date: Aug 2015
Posts: 31
Default Intuition of the step of PLA

According to the book, the update rule for PLA is w(t+1) = w(t) + y(t)x(t), and the book mentions "this rule moves the boundary in the direction of classifying x(t) correctly".

I understand that there is a convergence proof for PLA. But it is hard for me to see why such rule (or step) moves the boundary in the direction of classifying x(t) correctly. The formula just adds actual outcome (i.e. y(t)) times the misclassified point (i.e. x(t)) to the current weight matrix (which is just a vector of coefficient of hypothesis equation).

Any pointer will help.

Thanks in advance!
Reply With Quote

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT -7. The time now is 05:35 PM.

Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.