![]() |
|
#1
|
|||
|
|||
![]() |
#2
|
||||
|
||||
![]()
It is not necessarily the best approximation of the target function, but it is often close. If we have one, infinite-size training set, and we have infinite computational power that goes with it, we can arrive at the best approximation. In the bias-variance analysis, we are given an infinite number of finite training sets, and we are restricted to using one of these finite training sets at a time, then averaging the resulting hypotheses. This restriction can take us away from the absolute optimal, but usually not by much.
__________________
Where everyone thinks alike, no one thinks very much |
#3
|
|||
|
|||
![]()
Thank you very much for your answer Prof. Yaser. It clarified my doubt.
My kind regards, Andrea |
#4
|
|||
|
|||
![]()
Hi,
I have a doubt regarding g bar. I tried to calculate the bias for the second learner, i.e. h(x) = ax + b. So this is how did it:
Now I have two questions: 1. Please let me know whether I am proceeding in the right direction or not. 2. When I am trying to repeat this process with a polynomial model instead of linear model, my calculated bias for the polynomial model varies in great margin, even if the sample data points doesn't change. For polynomial as well, I took the mean of the coefficients, but still my answer (both g bar and bias) varies greatly with each run. What I am missing here? |
#5
|
||||
|
||||
![]() Quote:
2. Not sure if this is the reason, but if you are still using a 2-point training set, a polynomial model will have too many parameters, leading to non-unique solutions that could vary wildly.
__________________
Where everyone thinks alike, no one thinks very much |
#6
|
|||
|
|||
![]()
Thank You Prof. Yaser for your reply.
I am using a 10 point dataset for the polynomial model. However, the problem I am referring to defines y = f(x) + noise = x + noise. Previously by mistake I was assuming f(x) as y rather than only x. Later I noticed that all the calculation of bias and variance concentrate purely on f(x). Hence later I ignored the noise and now I am getting stable bias and variance for polynomial model for each run. |
#7
|
|||
|
|||
![]()
I am confused in trying to get from the first line to the second line for the first set of equations on page 63: ... ED[Ex[(g... on the first line to ...Ex[ED[( on the second line.
I sort of see the first line: expected value with respect to data set x (a subset of D I assume) is averaged over all possible data set x's in D. On the second line we have what might be the average of the argument over all of D inside the outer brackets. I don't know how to interpret Ex outside the outer brackets. In short, I certainly don't understand what exactly is meant by the 2nd line, and I may well not understand the first line. Any further explanation possible? |
![]() |
Thread Tools | |
Display Modes | |
|
|