LFD Book Forum  

Go Back   LFD Book Forum > Course Discussions > Online LFD course > Homework 4

Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 08-09-2012, 12:37 AM
hashable hashable is offline
Junior Member
Join Date: Jul 2012
Posts: 8
Default Question on Bias Variance Tradeoff

In the book and the lecture, it is said that generally a larger hypothesis set (more complex model) has lower bias and higher variance. This is intuitively explained by the pictures on page 64. Bias is shown as distance of (g-bar) from the target function f. Variance is illustrated with a shaded region around the target function f.

My question is: It appears from the picture that it should be possible to increase the hypothesis space in a way so that it does not include the target function f. E.g. If we include hypotheses in the direction "further away" from the target function f, then we may have managed to still keep the bias high (or even increase the bias).

From this line of reasoning, it appears that adding complexity to a model or a larger hypothesis space does not necessarily imply a decrease in bias (and/or an increase in variance). The decrease in bias occurs only when the hypothesis space grows in a way so that ends up being closer to f. But this need not happen always (theoretically at least).

Is this conclusion correct? If yes, then should it be kept in mind when applying these concepts in practice? Also if this is correct, then could you give some examples that can illustrate how adding complexity can still increase the bias.
Reply With Quote

bias, variance

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT -7. The time now is 06:51 AM.

Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.