LFD Book Forum  

Go Back   LFD Book Forum > Course Discussions > Online LFD course > Homework 4

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #1  
Old 04-28-2013, 04:19 PM
mvellon mvellon is offline
Junior Member
 
Join Date: Apr 2013
Posts: 9
Default *ANSWER* Stuck on #4

To calculate \bar{g} I generated several data sets each of two points where y=sin(pi*x). For each dataset, I generated a hypothesis (a slope a) that minimized the squared error for each of the two points. I did this by calculating the error as (ax_1-y_1)^2+(ax_2-y_2)^2, differentiating with respect to a, setting the result to zero and solving for a. This gave me a=(x_1y_1+x_2y_2)/(x_1^2+y_1^2). If I then average my per-dataset slopes (the a's), I get 1.42.

This seems wrong, not only as it's not an available choice () but also because it does not yield a smaller bias than, for example, .79.

I've seen suggestions to use linear regression to calculate the a's, but I don't think that's where I'm going wrong (not only that, but I'm not sure how to do the linear regression without an intercept term).
Reply With Quote
 

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -7. The time now is 10:28 PM.


Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.