
04-08-2012, 02:41 PM
|
 |
NTU
|
|
Join Date: Aug 2009
Location: Taipei, Taiwan
Posts: 601
|
|
Re: Perceptron Learning Algorithm
Quote:
Originally Posted by cool8137
I think, the probability depends on the number of data. Just as our Hypothesis function h converses towards the Target Function f, once all of the training data (x) agrees with the training values (y), the iteration stops, before it actually reaches f (simply because our sample training data satisfies to the final h, which is g)
For example: if the target function was a 45degree st. line (x2=x1), and there was only one training data say ((x1(1),x2(1)),y(1))=((1,2),+1), and if our first hypothesis function was the horizontal axis itself, the Perceptron Algorithm would stop in its first iteration, and conclude the the horizontal-axis to be close to the Target function (which was actually 45degree line through origin). But if we increase the number of data, the hypothesis function is forced to converge towards the target function, with more iterations.
But there will always be some discrepancy i guess, unless you are very lucky.
|
Indeed. I've made a similar comment here:
http://book.caltech.edu/bookforum/sh...31&postcount=4
__________________
When one teaches, two learn.
|