Quote:
Originally Posted by jlaurentum
Hello:
In slide 9 of lecture 5 (minute 33:03), the Professor gives an example of 3 colinear points for which there can be no possible hypothesis. Still, "it doesn't bother us because we want the maximum bound of possible dichotomies", so k=3 is not considered as a breakpoint. My question is:
In a d-dimensional perceptron, it appears we would not consider a set of points lying in a (d-1)-dimensional hyperplane as candidates for giving an "impossible" dichotomy. Why? Is it because the probability of picking such a set of points from the input space that all lie in a (d-1) dimensional space is zero? (As in the case of picking 3 collinear points in a plane).
|
It's worth observing that the set

of

-dimensional perceptrons, restricted to a

-dimensional subspace, is simply

, the set of

-dimensional perceptrons on that subspace. hence, the capabilities of

restricted to the subspace is the same as that of

.
It turns out that the power of the hypothesis set comprising perceptrons increases as the dimension of their domain increases. The three points are a good example. If co-linear, they cannot be shattered, regardless of what dimension space they are in. If not co-linear, they can always be shattered: this requires the domain to be at least

-dimensional.