Odd results using LibSVM on Prob 8
I generated 10 real number pairs between [1,+1] and labelled them using the function f = 1+1.91*x1 + 2.13*x2. Used LibSVM package in a Windows C++ environment setting SVM_Type as C_SVC and kernel_type as LINEAR. Called svm_train() to train on this data. It returned 6 SVs and model parameters. Using the same data set for testing (called svm_test()), I found that 2 out of the 10 points are misclassified! Happens quite frequently on repeating this process by randomly changing the function F() and the data. That's quite a poor result given that a PLA can easily get to 100% classification on the training sets. I have to believe I'm doing something wrong. Has anyone used LibSVM in this way? Would appreciate any help, tips or pointers. This is driving me up the wall! Thanks.
