![]() |
Exercise 1.12
Hi,
I thought I could only provide what Hoeffding Inequality's guarantee to my friend. Ein(g) could be very bad (says 0.5) as my hypothesis set could be bad and so I can only pick g which has smallest Ein(h). And so I can only promise that P[|Eout(g)-Ein(g)| < e] has an upper bound by Hoeffding Inequality... No? |
Re: Exercise 1.12
This is related to my Chapter 1 post about Section 1.3 being fundamentally flawed. You're correct, henry2015: You cannot promise any of the given answers (a) through (c) to Exercise 1.12.
What you can promise is this: (d) With high probability, you will either produce a hypothesis g that approximates f well out of sample, or you will declare that you have failed. You can promise this because Hoeffding guarantees that Ein will be close to Eout with high probability. So, with high probability, you will either produce a good-approximating g (Ein is small) or you will declare that you have failed (Ein is large). Although (d) is similar to the textbook's answer (c), there is an important distinction: (c) promises that almost every time you output a hypothesis g, g is a good approximator to f. (d) does not make any such promise. In fact, (d) allows that it might be the case the every time you output a hypothesis, it is a poor approximator. What (d) does promise is that, if you are in such a learning scenario, you will normally declare that you have failed rather than outputting a poor hypothesis. |
Re: Exercise 1.12
You are right. Part (c) should be reworded to say:
With high probability: you will either say you failed or you will produce a good g. |
All times are GMT -7. The time now is 11:35 AM. |
Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.