![]() |
Confused on question 6.
Edit: Solved it, the story below is no longer relevant. :)
I'm confused about how one is supposed to calculate the score exactly. My biggest confusion seems to stem from the misunderstanding of what a 'point' is. Is a point one of the input vectors? so 101, 110 and 111 are 3 points? So then g[a], returns 1 for all three points would mean that: Code:
101 | 1 Code:
101 | 0 Code:
101 | 0 Code:
101 | 1 Code:
101 | 0 I'm utterly confused by the question. :/ |
Re: Confused on question 6.
Quote:
|
Re: Confused on question 6.
Quote:
Thank you for the response, I was approaching the question completely wrong but solved it in the meantime. :) |
Re: Confused on question 6.
Quote:
|
Re: Confused on question 6.
Quote:
|
Re: Confused on question 6.
Quote:
Hypotheses are the products of learning that try to approximate the target function. In this problem, we prescribe different learning scenarios that result in different hypotheses, then attempt to grade these hypotheses. We grade them according to how well each of them approximates the target function. The twist is that we consider all possible target functions and grade the hypothesis according to how well it approximates each of these possible targets. |
Re: Confused on question 6.
Thank you - I understand now. For some reason it took me a leap to figure out how to build the "target function" such that it could be measured as stated in the problem. Originally, I had a list of 8 "functions" - but each function was just simply one of the 8 permutations where a permutation was an input point and a possible output.
|
Re: Confused on question 6.
Hi,
What's a possible target function? Is that a combination of boolean operators? How do you come up with the formula 2^2^3 for total number of possibl target functions for 3 boollean inputs? Thank you. |
Re: Confused on question 6.
Quote:
So, y-values on points in D are not used in the answer? Seems, number of matches do not affected which hypothesis I choose - any hypothesis produce same number of matches Binomial(3, #matches) on these 3 points. Seems too easy, like dangerous trap or puzzle with catchy answer - if number of matches is always the same, why to define some complicated functions of matches and give Y-values on other five points. Or I got something wrong :| May be matches outside these 3 points (matches inside D) should be counted too? |
All times are GMT -7. The time now is 05:24 PM. |
Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
The contents of this forum are to be used ONLY by readers of the Learning From Data book by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, and participants in the Learning From Data MOOC by Yaser S. Abu-Mostafa. No part of these contents is to be communicated or made accessible to ANY other person or entity.